New designed nerve conduits with a porous ionic cross-linked alginate/chitisan structure for nerve regeneration.

نویسندگان

  • Jen-Ray Chaw
  • Hsia-Wei Liu
  • Yu-Chao Shih
  • Ching-Cheng Huang
چکیده

A new fabrication process for designing nerve conduits with a porous ionic cross-linked alginate/chitosan composite for nervous regeneration could be prepared. New designed nerve conduits with a porous ionic cross-linked alginate/chitosan composite were developed for nervous regeneration. Nerve conduits (NCs) represent a promising alternative to conventional treatments for peripheral nerve repair. NCs composed of various polysaccharides such as sodium alginate were designed and prepared by lyophilization as potential matrices for tissue engineering. The use of a porous ionic cross-linked alginate/chitosan composite could provide penetration channels that would lead to the products' increasing penetration rate properties. Furthermore, the use of a porous ionic cross-linked alginate/chitosan composite also has a highly cross-linked structure, which would give the products relatively good mechanical properties. Furthermore, the drug could be incorporated into nerve conduits as a new drug-carrying system for nerve regeneration because of its porous and cross-linked structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Porous Alginate Conduit using a Freeze Drying Technique for Neural Engineering

Peripheral nerve injuries can lead to lifetime loss of function and permanent disfigurement. Different methods, such as conventional allograft procedures and use of biologic tubes present problems when used for damaged peripheral nerve reconstruction. Designed scaffolds comprised of natural and synthetic materials are now widely used in the reconstruction of damaged tissues. Porous alginate con...

متن کامل

Rat Sciatic Nerve Reconstruction Across a 30 mm Defect Bridged by an Oriented Porous PHBV Tube With Schwann Cell as Artificial Nerve Graft

An oriented poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit has been used to evaluate its efficiency based on the promotion of peripheral nerve regeneration in rats. The oriented porous micropatterned artificial nerve conduit was designed onto the micropatterned silicon wafers, and then their surfaces were modified with oxygen plasma to increase cell adhesion. The designed conduits w...

متن کامل

Fibrin glue as a stabilization strategy in peripheral nerve repair when using porous nerve guidance conduits

Porous conduits provide a protected pathway for nerve regeneration, while still allowing exchange of nutrients and wastes. However, pore sizes >30 µm may permit fibrous tissue infiltration into the conduit, which may impede axonal regeneration. Coating the conduit with Fibrin Glue (FG) is one option for controlling the conduit's porosity. FG is extensively used in clinical peripheral nerve repa...

متن کامل

ساخت و بهینه سازی کانال هدایت عصبی ژلاتین/ نانو شیشه زیستی جهت ترمیم عصب محیطی

Introduction & Objective: Peripheral nerve injury is common in trauma patients and 4.5% of all soft-tissue injuries are accompanied by defects of peripheral nerve. Peripheral nerve injuries can lead to lifetime loss of function and permanent disfigurement. Designed conduits com-prised of natural and synthetic materials are now widely used in the construction of damaged tissues. The aim of thi...

متن کامل

A 3D-engineered porous conduit for peripheral nerve repair

End-to-end neurorrhaphy is the most commonly used method for treating peripheral nerve injury. However, only 50% of patients can regain useful function after treating with neurorrhaphy. Here, we constructed a 3D-engineered porous conduit to promote the function recovery of the transected peripheral nerve after neurorrhaphy. The conduit that consisted of a gelatin cryogel was prepared by molding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bio-medical materials and engineering

دوره 26 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2015